Fuzzy c-means clustering methods for symbolic interval data
نویسنده
چکیده
This paper presents adaptive and non-adaptive fuzzy c-means clustering methods for partitioning symbolic interval data. The proposed methods furnish a fuzzy partition and prototype for each cluster by optimizing an adequacy criterion based on suitable squared Euclidean distances between vectors of intervals. Moreover, various cluster interpretation tools are introduced. Experiments with real and synthetic data sets show the usefulness of these fuzzy c-means clustering methods and the merit of the cluster interpretation tools. 2006 Published by Elsevier B.V.
منابع مشابه
The Comparison of Fuzzy Clustering Methods for Symbolic Interval-valued Data
Interval-valued data can find their practical applications in such situations as recording monthlyinterval temperatures at meteorological stations, daily interval stock prices, etc. The primary objectiveof the presented paper is to compare three different methods of fuzzy clustering for interval-valuedsymbolic data, i.e.: fuzzy c-means clustering, adaptive fuzzy c-means clustering a...
متن کاملHausdorff Distance Measure Based Interval Fuzzy Possibilistic C-Means Clustering Algorithm
Clustering algorithms have been widely used artificial intelligence, data mining and machine learning, etc. It is unsupervised classification and is divided into groups according to data sets. That is, the data sets of similarity partition belong to the same group; otherwise data sets divide other groups in the clustering algorithms. In general, to analysis interval data needs Type II fuzzy log...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملWasserstein Metric Based Adaptive Fuzzy Clustering Methods for Symbolic Data
Given the current limitations in fuzzy clustering metric, the aim of this paper is to present new wasserstein metric based adaptive fuzzy clustering methods for partitioning symbolic interval data. Wasserstein metric shows adavantages in digging distribution information in symbolic interval data. Besides, the proposed fuzzy clustering methods also emphasize correlation structure between indices...
متن کاملRobust Interval Competitive Agglomeration Clustering Algorithm with Outliers
In this study, a novel robust clustering algorithm, robust interval competitive agglomeration (RICA) clustering algorithm, is proposed to overcome the problems of the outliers, the numbers of cluster and the initialization of prototype in the fuzzy C-means (FCM) clustering algorithm for the symbolic interval-values data. In the proposed RICA clustering algorithm, the Euclidean distance measure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 28 شماره
صفحات -
تاریخ انتشار 2007